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Disorder in spin-orbit �SO� coupling is an important feature of real low-dimensional electron structures. We
study spin relaxation due to such a disorder as well as resulting abilities of spin manipulation. The spin
relaxation reveals quantum effects when the spatial scale of the randomness is smaller than the electron
wavelength. Due to the disorder in SO coupling, a time-dependent external electric field generates a spatially
random spin-dependent perturbation. The resulting electric dipole spin resonance in a two-dimensional electron
gas leads to spin injection in a frequency range of the order of the Fermi energy. These effects can be important
for possible applications in spintronics.
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I. INTRODUCTION

Electron dynamics in low-dimensional semiconductor
structures reveals features of a spin-dependent transport that
are interesting for fundamental and applied research.1 One of
the main ingredients necessary to generate spin-dependent
transport in nonmagnetic semiconductor systems is the spin-
orbit �SO� interaction. Such an interaction offers a possibility
of an efficient and fast spin manipulation with electric fields,
which in turn allows to prepare a required spin state.2–8 At
the same time, spin relaxation and decoherence due to the
SO coupling prevent long-distance spin propagation. Two
models are widely used to describe the SO coupling in low-
dimensional structures: the Rashba and the Dresselhaus ones.
In both models, the SO field and the corresponding spin pre-
cession rate are approximately linear in the electron momen-
tum. Random evolution in the momentum due to collisions
with impurities, phonons, and other electrons results in ran-
domness in the spin precession, and thus leads to spin relax-
ation. However, in reality both interactions have an intrinsic
randomness due to system imperfections, including the fluc-
tuations in the dopant ion density9,10 or random bonds at the
quantum well �QW� interface.11 Even if the mean values of
the Rashba and Dresselhaus fields vanish, their fluctuations
remain and can cause interesting consequences, including
memory effects,10 spin Hall effect in the finite-size
systems,12 and spin-dependent localization.13

There are at least four different two-dimensional �2D�
systems, where the SO disorder plays an important or crucial
role. First, the effect of random SO coupling can be respon-
sible for the spin relaxation in Si/Ge QWs.11,14 Second, the
spin-dependent disorder influences15 the spin helix pattern
recently observed in the GaAs �001� QW with the balanced
Rashba and Dresselhaus terms.16 Third, the randomness
causes relaxation of the spin component along the growth
axis observed in Ref. 17 in GaAs �011� QW, investigated
now for spintronics applications.17,18 Fourth, the most recent

example of the system with random SO coupling is
graphene, where the randomness and spin relaxation appear
due to the rippling of the layers19 and due to the disorder and
electron-phonon coupling in the substrate.20

In this Rapid Communication we study the effects of ran-
domness on the spin relaxation and spin injection. We show
that spin relaxation reveals interesting quantum effects aris-
ing from the noncommutativity of the momentum and
coordinate-dependent randomness. The calculated spin injec-
tion can be observed in a wide range of frequencies, ex-
tended up to the electron Fermi energy.

II. MODEL

We consider a two-dimensional electron gas with fluctu-
ating Rashba SO interaction. In the absence of external
fields, the Hamiltonian has the form �we use units with �
=1� H=H0+Hso, where

H0 = −
�2

2m
+ U�r� , �1�

Hso = −
i

2
�x��y,��r�� +

i

2
�y��x,��r�� . �2�

Here m is the electron effective mass, U�r� is the random
potential leading to the momentum relaxation time �p, and
� , � stands for the anticommutator. The random Rashba field
��r� has zero expectation value ���r��=0 and correlation
function

C���r − r�� � ���r���r��� = ��2�F�r − r�� . �3�

The brackets � . . . � stand for the average over the disorder,
and the range function F�r−r�� depends on the disorder
type.
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III. SPIN RELAXATION

We begin with calculation of spin relaxation rate due to
random Hso interaction. The eigenfunctions of Hamiltonian
H0 �normalized to the unit area� are �k=eik·r��, where we
included the spin index � in the definition of momentum
k= �k ,��, and �� is the spin function. Matrix elements of SO
interaction Vkk���k�Hso�k�� are

Vkk� =
�k−k�

2
����x�ky + ky�� − �y�kx + kx������ , �4�

where �k−k� is the Fourier component of the random Rashba
field. To calculate the spin relaxation time, we use the kinetic
equation for spin density matrix �k �see for instance Refs.
21–23�

��k

�t
+ i	Hso,�k
 = St �k. �5�

Here, due to the absence of the regular contribution in the
Hso, the commutator term in Eq. �5� vanishes. Therefore, the
entire effect of SO randomness is included in the collision
integral21

St �k = ��
k�

�2Vkk��k�Vk�k − Vkk�Vkk��k − �kVkk�Vk�k�

	
��k − �k�� , �6�

with kinetic energy �k=k2 /2m. We take �k in the form cor-
responding to the only nonzero z-spin component �k=�0k
+Sk�z, with �0k being the equilibrium density matrix. The
resulting macroscopic spin density is

�sz� =
1

2
� Sk

d2k

�2��2 . �7�

Using Eqs. �4� and �6� we find

St �k = −
�m�z

2k
�
q

C���q�
4k2 − q2

q
�Sk� + Sk�
 q

2k
− cos �� ,

�8�

where C���q� is the Fourier transform of the correlator
C���r�, � is the angle between k and q, and q=k−k� is the
momentum change due to spin-flip scattering by fluctuations
in SO field. Since the system is macroscopically isotropic in
the xy plane, the coordinate-independent function Sk depends
only on k that yields Sk=Sk�, and thus we obtain

St �k = −
Sk�z

�k
s , �9�

where �k
s is the spin relaxation time,

1

�k
s =

m

4�
�

0

2k

C���q��4k2 − q2�1/2dq . �10�

We employ the following form of C���q�,

C���q� = 2���2�R2e−qR, �11�

where R is the length scale of variations in �. This form of
correlator is realized when the Rashba SO coupling is

formed by the z-component of electric field of random
donors24 symmetrically distributed on both sides of the QW
at the distance L=R /2 from the QW symmetry plane.

With Eqs. �10� and �11� we obtain

1

�k
s =

1

2�s0
�

0

2kR

e−x�4k2R2 − x2�1/2dx

=
�Rk

2�s0
	I1�2kR� − L1�2kR�
 , �12�

where I1�x� and L1�x� are the Bessel and Struve functions,
respectively, and 1 /�s0�m��2�. As a result, we obtain

1

�k
s =

1

�s0
	 �kR , kR  1,

��kR�2/2, kR � 1.
� �13�

Equation �13� agrees with the results of Ref. 10 for kR
1 and shows that for given �s0 the relaxation rate rapidly
decreases at small kR. Due to the anticommutator form of
Hso, at small kR main contribution to the SO field comes
from the derivatives of ��r�. The increase in the relaxation
time in this regime can be understood as a decrease in the
disorder effect due to the averaging of Hso over the area of
1 /k2. The dependence of the spin relaxation time on the cor-
relation radius R is presented in Fig. 1.

IV. COMBINED RESONANCE

Now we consider response of the system in a static mag-
netic field B to an external periodic field A�t�=A0e−i�t. The
corresponding interaction Vext=−�e /c�v̂A, where v= i	H0
+Hso ,r
 is the velocity operator, induces combined reso-
nance causing transfers between states with different spins
and momenta. To study the spin dynamics, we retain only the
spin-related part of the Hamiltonian and present it as

H = H0 + Hso + HB + Vext, �14�

HB =
�

2
�� · n�, Vext = − ��r�

e

c
��xAy − �yAx� , �15�

where �=g�BB, g is the electron Lande factor, and n is the
direction of B. We include the magnetic field via the Zeeman
term, while neglect its orbital effects. The electron energy
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FIG. 1. �Color online� Spin relaxation time as a function of the
correlation radius R for different electron wave vectors k marked
near the lines.
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spectrum is then spin split, �k↑,↓=�k�� /2, where arrows
correspond to the direction parallel and opposite to the mag-
netic field. At realistic conditions, the splitting is much
smaller than the chemical potential � of the degenerate elec-
tron gas. Here the periodic field leads to a disorder in Vext
due to the factor ��r�. As a result, Vext causes transitions with
the change in the electron momentum and spin in a single
process �Fig. 2�. This is in contrast to the conductivity, where
the coupling of the external field to the disorder appears only
through the disorder effect on the electron states, and the
transitions are momentum conserving. Below we calculate
the corresponding spin pumping rate.

For given geometry of the external fields, denoted here as
	g
 the time evolution of the spin projected electron density
n�

	g
 is due to the spin-gain I��→�
	g
 �� ,�� and spin-loss

I�→��
	g
 �� ,�� processes,

dn�
	g


dt
= I��→�

	g
 ��,�� − I�→��
	g
 ��,�� . �16�

The concentration gain

I��→�
	g
 ��,�� = 2��

kk�

����Wkk�
	g
 �����2

		f��k�� − f��k�

��k − �k� − �� , �17�

is due to all possible transitions from occupied �� to unoc-
cupied � states; a similar expression holds for the loss
I�→���� ,��. The perturbation associated with the dipole mo-
ment acquired by electron spin in the presence of SO
coupling2,3 has the form

Wkk�
	g
 =

e

c
�k−k���yA0x − �xA0y� . �18�

Due to charge conservation, d�n�
	g
+n��

	g
� /dt=0. Thus, pump-
ing rate for the spin density component along the magnetic
field �sB

	g
�, is

d�sB
	g
�

dt
=

d

dt

n↑
	g
 − n↓

	g


2
=

dn↑
	g


dt
. �19�

Substituting Eq. �18� into Eq. �17� and averaging over
spin disorder, we obtain the component of the generation rate

I��→���,�� = 2�
e2

c2K��→�
	g
 �

kk�

C���q�

		f��k�� − f��k� + ��

��k − �k� − �� ,

�20�

where the coefficient K��→�
	g
 is determined by the field con-

figuration. Here we consider two geometries: �i� in-plane
magnetic field B= �B ,0 ,0�, �sB

	g
�= �sx�, linearly polarized
light A0= �A0x ,A0y� and �ii� z-axis magnetic field B
= �0,0 ,B�, �sB

	g
�= �sz�, circularly polarized light A0

=A0�x , iy�. In case �i� K��→�
	g
 =A0x

2 . The transition rates sat-
isfy symmetry relation I��→��� ,��= I�→���� ,−��, and
dn�

	g
 /dt in Eq. �16� vanishes if B=0. In case �ii� K��→�
	g
 =0

for the transitions up-down and K��→�
	g
 =2A0

2 for the opposite
process. Therefore, for the circularly polarized light the spin
pumping occurs even at B→0.

The exact formula for the pumping rate, valid in the gen-
eral case ��� /2, can be obtained after integrating Eq. �20�
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FIG. 3. �Color online� Spin pumping as a function of � for
different values of correlation radius R marked near the lines. �a�
In-plane field and linearly polarized light. Weak peaks seen at
small R at �=� are manifestations of the spin-split Van Hove
singularity in the density of states. We use units �d�s� /dt�0

=1 /��e2 /c2�A0x
2 /�s0. �b� z-axis field with B→0 and circularly po-

larized light. We use units �d�s� /dt�0=2 /��e2 /c2�A0
2 /�s0.

FIG. 2. �Color online� Possible spin-flip transitions. The initial
state is k�↑; the final states are k↓. Dashed circle corresponds to the
transitions allowed by the energy conservation. The region in the
momentum space with the size of the order of inverse correlation
length 1 /R, where the transitions can occur effectively, is also
marked in the figure. If the final state is inside this area, the transi-
tion has a relatively high probability.
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over the directions of q=k−k�. As a result one obtains �with
y=kR�

I��→���,�� =
2

�

e2

c2K��→�
	g
 1

�s0
�

ymin,��

ymax,��
ydy

	 �
�y−y���

y+y�� e−xxdx

	4y2x2 − �x2 + 2m���� − ��R2�2
1/2 ,

�21�

where ymin,��=R	max�0,2m��−��� /2−���
1/2, ymax,��
=R	2m��−��� /2�
1/2, y��= 	y2+2m��−����R2
1/2, and
1 /�s0 is the prefactor in Eq. �12�.

For numerical calculations we use the following param-
eters: electron effective mass for a Si/Ge �001� QW m
=0.19m0 �where m0 is free electron mass�, electron concen-
tration per valley n=5	1011 cm, Fermi momentum kF
=1.8	106 cm−1, and the Fermi energy �=6.3 meV. To cal-
culate d�sx� /dt we take magnetic field B=1 T leading to the
spin splitting �=0.12 meV for g=2. The injection rates
d�sB

	g
� /dt are presented in Fig. 3. For both light polariza-
tions, the peaks have the maximum position and the width on
the order of ��� /kFR. With the increase in R at given kF,
the available momentum and energy ranges decrease, the
peaks sharpen and shift to lower frequencies. For linearly

polarized light 	Fig. 3�a�
, the pumping rate is linear in �.

V. CONCLUSIONS

We have studied spin relaxation and infrared radiation-
induced spin transitions in a 2D electron gas with the Rashba
field disorder. Quantum effects related to noncommutativity
of the momentum and random Rashba potential lead to the
decrease in the spin relaxation rate when the spatial scale of
the randomness is smaller than the electron wavelength. In
contrast to the conductivity, external periodic electromag-
netic field generates a perturbation directly including the SO
disorder, and, therefore, causing spin flip accompanied by the
change in the momentum. As a result, electron spin density
can be pumped by coupling of spins to the external periodic
field in the frequency range up to the Fermi energy. These
effects extend the abilities of manipulating spins in semicon-
ductor structures.

ACKNOWLEDGMENTS

This work is partly supported by the FCT �Grant No.
PTDC/FIS/70843/2006� in Portugal and by Polish Ministry
of Science and Higher Education as a research project in
years 2007–2010. E.Y.S. acknowledges support of the Uni-
versity of Basque Country UPV-EHU �Grant No. GIU07/40�
and valuable discussion with M. M. Glazov.

*Permanent address: Department of Physics, Adam Mickiewicz
University, Umultowska 85, 61-614 Poznań, Poland.
1 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323

�2004�.
2 E. I. Rashba and V. I. Sheka, Fizika Tverd. Tela �Leningrad� 3,

2369 �1961� 	Sov. Phys. Solid State 3, 1718 �1962�
; Landau
Level Spectroscopy, edited by G. Landwehr and E. I. Rashba
�North-Holland, Amsterdam, 1991�, p. 131, and references
therein.

3 E. I. Rashba and Al. L. Efros, Phys. Rev. Lett. 91, 126405
�2003�; Appl. Phys. Lett. 83, 5295 �2003�.

4 M. Duckheim and D. Loss, Phys. Rev. Lett. 101, 226602 �2008�.
5 D. V. Khomitsky, Phys. Rev. B 77, 113313 �2008�; 79, 205401

�2009�.
6 K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K.

Vandersypen, Science 318, 1430 �2007�.
7 M. Pioro-Ladriere, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K.

Yoshida, T. Taniyama, and S. Tarucha, Nat. Phys. 4, 776 �2008�.
8 Y. J. Bao and S. Q. Shen, Phys. Rev. B 76, 045313 �2007�.
9 E. Ya. Sherman, Phys. Rev. B 67, 161303�R� �2003�.

10 M. M. Glazov and E. Ya. Sherman, Phys. Rev. B 71, 241312�R�
�2005�. If the Rashba field produced by the random donors, ��2�
behaves as 1 /R2, and, therefore, the spin relaxation time de-
creases with the increase in R.

11 L. E. Golub and E. L. Ivchenko, Phys. Rev. B 69, 115333
�2004�.

12 C. P. Moca, D. C. Marinescu, and S. Filip, Phys. Rev. B 77,
193302 �2008�.

13 Y. Tserkovnyak and S. Akhanjee, Phys. Rev. B 79, 085114
�2009�.

14 Z. Wilamowski, W. Jantsch, H. Malissa, and U. Rössler, Phys.
Rev. B 66, 195315 �2002�.

15 M.-H. Liu, K.-W. Chen, S.-H. Chen, and C.-R. Chang, Phys.
Rev. B 74, 235322 �2006�.

16 J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, Shou-
Cheng Zhang, S. Mack, and D. D. Awschalom, Nature �London�
458, 610 �2009�.

17 G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hübner,
and M. Oestreich, Phys. Rev. Lett. 101, 206601 �2008�.

18 V. V. Bel’kov, P. Olbrich, S. A. Tarasenko, D. Schuh, W. Weg-
scheider, T. Korn, C. Schüller, D. Weiss, W. Prettl, and S. D.
Ganichev, Phys. Rev. Lett. 100, 176806 �2008�.

19 D. Huertas-Hernando, F. Guinea, and A. Brataas, Eur. Phys. J.
Spec. Top. 148, 177 �2007�.

20 C. Ertler, S. Konschuh, M. Gmitra, and J. Fabian, Phys. Rev. B
80, 041405�R� �2009�.

21 S. A. Tarasenko, Pis’ma Zh. Eksp. Teor. Fiz. 84, 233 �2006�
	JETP Lett. 84, 199 �2006�
.

22 D. Culcer and R. Winkler, Phys. Rev. B 76, 195204 �2007�; D.
Culcer, arXiv:0904.1999 �unpublished�; R. Winkler, D. Culcer,
S. J. Papadakis, B. Habib, and M. Shayegan, Semicond. Sci.
Technol. 23, 114017 �2008�.

23 M. M. Glazov, Solid State Commun. 142, 531 �2007�; Phys.
Rev. B 70, 195314 �2004�.

24 T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
�1982�.

DUGAEV et al. PHYSICAL REVIEW B 80, 081301�R� �2009�

RAPID COMMUNICATIONS

081301-4


